EGC220 Class Notes 4/12/2023

Baback Izadi

Division of Engineering Programs
bai@engr.newpaltz.edu

Test 2 will cover the following topics

- Design of combinational circuits
- Circuit conversion to all NAND or NOR gates
- Design and use of
- Multiplexers
- Demultiplexers
- Decoders
- Encoders

- Design of combinational circuits using PLD's
- Latch and flip flops characteristics and timing.
- Design of ripple counters
- Analysis of sequential circuits

Flip Flops Vs. Latches

- Flip flops are Edge Triggered
- Latches are level triggered
(a) JK Flip-Flop
$\mathrm{J} \quad \mathrm{K} \quad Q(t+1) \quad$ Operation
(b) SR Flip-Flop
$\mathrm{S} \quad \mathrm{R} \quad \mathrm{Q}(\boldsymbol{t}+1) \quad$ Operation

Flip Flops Vs. Latches

- Flip flops are Edge Triggered
- Latches are level triggered
(c) D Flip-Flop
$D \quad Q(t+1) \quad$ Operation

0	Reset
1	Set

(d) T Flip-Flop
T $\quad Q(t+1) \quad$ Operation
$0 \quad Q(t) \quad$ No change

Problem I
Using T flip-flops, design a ripple counter that counts 0 and repeats.

Show the waveform diagram for the counter in Problem I.

Problem 1 1. UP 2. Final cunt $\left.{ }^{\text {MB }} \mid 0\right)^{\text {SB }} \rightarrow 12$
Problem 1 1. UP 2. Wind
Using JK)flip-flops, design a counter that repeatedly counts 6 .

Problem 2
Using D flip-flops, design a counter that repeatedly count 12

Problem 3
Using S-R flip-flops, design a counter that repeatedly counts $9-3 \rightarrow 2$

Problem 4

Using JK flip-flops, design a counter that repeatedly counts 4-34

Problem 4

Using JK flip-flops, design a counter that repeatedly counts $34-4$

